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Heterogeneous aging across multiple organ 
systems and prediction of chronic disease 
and mortality

Ye Ella Tian    1  , Vanessa Cropley1, Andrea B. Maier2,3,4, 
Nicola T. Lautenschlager5,6, Michael Breakspear7,8 & Andrew Zalesky    1,9 

Biological aging of human organ systems reflects the interplay of age, 
chronic disease, lifestyle and genetic risk. Using longitudinal brain imaging 
and physiological phenotypes from the UK Biobank, we establish normative 
models of biological age for three brain and seven body systems. Here we 
find that an organ’s biological age selectively influences the aging of other 
organ systems, revealing a multiorgan aging network. We report organ age 
profiles for 16 chronic diseases, where advanced biological aging extends 
from the organ of primary disease to multiple systems. Advanced body 
age associates with several lifestyle and environmental factors, leukocyte 
telomere lengths and mortality risk, and predicts survival time (area under 
the curve of 0.77) and premature death (area under the curve of 0.86). Our 
work reveals the multisystem nature of human aging in health and chronic 
disease. It may enable early identification of individuals at increased risk 
of aging-related morbidity and inform new strategies to potentially limit 
organ-specific aging in such individuals.

Age is the greatest common risk factor for chronic diseases1,2; how-
ever, trajectories of age-related decline vary markedly between indi-
viduals and differ across human organ systems3,4. Biological age is 
thus recognized as a more informative marker of disease risk and 
mortality than chronological age5,6. As a result, cellular, molecular and 
physiological aging biomarkers7,8 have been developed and studied 
across multiple species9–14.

To fulfill the clinical potential of this work, biological aging 
clocks that are specific to particular organ systems, tissue types and 
aging-related diseases are now required to be established in large and 

diverse longitudinal populations15. A multiorgan characterization 
of biological aging across major chronic diseases can facilitate new 
organ-specific therapeutic opportunities, yield disease-specific risk 
calculators and elucidate factors that drive the divergence of an organ’s 
biological age from chronological age. Elucidating such factors will 
inform strategies to potentially slow age-related decline, reduce the 
risk of chronic diseases and promote healthy longevity16–19.

Biological aging of the human brain has been the focus of con-
siderable research20–22. Predictive models of brain age derived from 
neuroimaging can infer apparent age based on brain structure and 
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pulmonary, musculoskeletal, immune, renal, hepatic and metabolic; 
Supplementary Table 1) and three brain (gray matter, white matter 
and brain connectivity; Supplementary Table 2) systems. Cognitive 
performance formed an additional group (Supplementary Table 3). 
Phenotypes for body systems were available for 143,423 individuals 
(age range 39–73 years, mean 56.7 ± 8.2, 79,980 males), and brain 
phenotypes were available for 36,901 individuals (age range 45–82 
years, mean 64.2 ± 7.5, 17,203 males). Cognitive phenotypes were 
available for 32,317 individuals (age range 45–82 years, mean 65.1 ± 7.6, 
15,712 males).

Healthy adults with no major medical conditions were selected 
to train machine-learning models to predict individual chronologi-
cal age (Methods). Separate predictive models of chronological age 
were established for each body and brain system and sex. Subtracting 
actual chronological age from predicted chronological age, referred 
to as the age gap, captures whether an individual’s organ system seems 
older (gap > 0) or younger (gap < 0) than population norms for the 
individual’s chronological age and sex. Age gaps thus provide norma-
tive, organ-specific clocks of biological age (Fig. 1).

Normative aging models
Chronological age could be predicted with modest to high accuracy for 
body (female, r = 0.79, mean absolute error (MAE) = 3.71 years; male, 
r = 0.72, MAE = 4.46 years) and brain (female, r = 0.79, MAE = 3.52 years; 
male, r = 0.80, MAE = 3.68 years) systems and cognition (female, r = 0.53, 
MAE = 4.87 years; male, r = 0.54, MAE = 5.21 years; Fig. 2a). Prediction 
accuracies varied between organ systems and sexes (Fig. 2b, Extended 
Data Fig. 1 and Supplementary Table 4). Comparable accuracies  
for brain systems were achieved in additional datasets (female, 
r = 0.82, MAE = 3.52; male, r = 0.85, MAE = 3.41; Extended Data Fig. 2a).  

function. The difference between chronological age and predicted 
brain age, known as the brain age gap, provides a measure of biologi-
cal age and can reveal insight into whether an individual’s brain seems 
older or younger relative to same-aged peers21. While age gaps may 
first emerge in early life and accumulate across the lifespan, longi-
tudinal increases in age gaps later in life relate more specifically to 
aging-related decline. In principle, biological age can be estimated 
in vivo for organs and body systems other than the brain. Organ-specific 
age gaps will enable concurrent investigation of biological aging across 
multiple body and brain systems. To this end, we develop new assays 
to measure the biological age (age gap index) for seven body and three 
brain systems using imaging, physiological and blood-derived pheno-
types acquired cross-sectionally (body, n = 143,423; brain, n = 36,901) 
and longitudinally (body, n = 1,220; brain, n = 1,294) in the UK Biobank 
cohort. We aim to (1) map the influence of an organ’s biological age 
on the aging of other organ systems; (2) elucidate body and brain age 
profiles characteristic of 16 aging-related chronic diseases; (3) establish 
whether organ-specific biological age associates with lifestyle factors 
and leukocyte telomere length; and (4) predict the risk of mortality 
using body and brain age profiles. Our work reveals the heterogeneity 
of biological aging across individuals and organs, and its relation to life-
style factors, risk of specific chronic diseases and mortality in midlife 
and older adults. Quantifying the impact of major chronic diseases on 
organ aging holds substantial promise for precision geriatric medicine 
and related clinical translation.

Results
Multimodal brain imaging, physiological and blood phenotypes 
were grouped based on their relevance to the structure and func-
tion of specific organ systems; namely, seven body (cardiovascular, 
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Fig. 1 | Overview of study design. a, Organ systems for which normative 
models of biological age were established using organ-specific phenotypes. Key 
phenotypes are listed below each system. b, Predictive models of chronological 
age were established using phenotypes from healthy adults and 20-fold cross-
validation. Separate models were developed for each body and brain system and 
sex. Using models trained on healthy adults, personalized body and brain age 

gaps were determined for individuals with lifetime diagnoses of chronic diseases 
to investigate the relation of biological age with disease and mortality. Two 
independent datasets were used to validate brain age gap estimates in individuals 
with dementia. Associations between genetic and environmental factors and 
biological age were also investigated. UKB, UK Biobank. Image was created with 
BioRender.com.
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Applying the trained models to predict the chronological age of all 
participants resulted in personalized organ-specific age gaps.

Follow-up phenotype and imaging measurements were avail-
able for body (n = 1,220, 837 males; 2.1–5.6 years follow-up) and brain 

(n = 1,294, 632 males; 2.0–2.7 years follow-up) systems. Chronological 
age was thus predicted at baseline (t0) and follow-up (t1), yielding two 
age gaps for each organ per individual (Fig. 2c). This enabled estimation 
of longitudinal rates of change in body and brain age.
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Fig. 2 | Age prediction accuracy and multiorgan aging networks. a, Scatter-
plots show associations between chronological and predicted age for prediction 
models based on body (left), brain (mid) and cognitive (right) phenotypes. Lines 
of best fit are indicated with solid black lines. n, training sample size; r, Pearson 
correlation coefficient. b, Bar plots show Pearson correlation coefficients 
(top) and MAE (bottom) quantifying age prediction accuracy (average of ten 
repetitions of 20-fold cross-validation). c, Assessment timeline for measures 
of body and brain function. d, Influence of body age gaps (left) on brain age 
gaps (right), adjusting for sex, chronological age and the time interval between 
assessments. Links are shown for significant influences inferred from SEM (false 
discovery rate (FDR)-corrected for eight body ages × four brain ages = 32 tests).  

e, Influence of baseline organ age on longitudinal rate of change in organ age, 
adjusting for overall body age gap, sex and chronological age at baseline. 
An arrow from organ X to organ Y indicates that the age gap of X at baseline 
significantly influences the rate of aging of Y (P < 0.05, FDR-corrected for 
7 × 6 = 42 tests). f, Same as e but for brain systems (P < 0.05, FDR-corrected 
for 3 × 2 = 6 tests). Edge thickness and color reflect regression coefficients 
(β) estimated for edges comprising the structural equation model. Including 
baseline and follow-up cognitive age gaps in the SEM did not reveal significant 
influences of baseline tissue-specific brain age on the rate of cognitive aging. 
Metab., metabolism; pulmon., pulmonary; muscle, musculoskeletal; cardiac, 
cardiovascular; GM, gray matter; WM, white matter.
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Multiorgan aging networks
Given that organ systems dynamically interact via nervous, circulatory 
and lymphatic networks23, we hypothesized that an organ’s age would 
selectively influence the rate of aging of several connected organ sys-
tems. Using structural equation modeling (SEM) on organ age gaps, we 
found that advanced biological age of several body systems explains 
advanced brain age (Fig. 2d). While these aging pathways are not nec-
essarily causal in the strict sense, they reveal directional relationships 
elucidated through an established process of casual structure discovery 
(Methods). For example, cardiovascular age demonstrates the strong-
est influence on brain age, where a 1-year increase in cardiovascular 
age explains a 0.074-year (27-d) increase in overall brain age and 19-d 
and 27-d increases in functional connectivity (FC) and white matter 
ages, respectively.

We next tested whether an organ’s baseline biological age influ-
ences the rate of change in the biological age of other organs. A positive 
influence would provide evidence consistent with faster aging24. Due 
to minimal overlap between individuals (n = 17) with both longitudinal 
body and brain phenotypes, analyses were conducted separately for 
body and brain systems. The influence of one organ’s age gap on the 
rate of change in the age gap of each other organ was modeled using 
SEM (Methods), yielding multiorgan aging networks (body, Fig. 2e, 
and brain, Fig. 2f). The networks reveal several putative aging path-
ways. For example, advanced age of the pulmonary system leads to 
faster cardiovascular aging, which in turn results in faster aging of 
the musculoskeletal and renal systems (Fig. 2e). The cardiovascular–
renal–metabolic–musculoskeletal systems form positive feedback 
loops, where faster aging is reinforced between organ systems. The 
musculoskeletal system is an in-degree hub, suggesting that faster 

musculoskeletal aging is a common sequela of aging across multiple 
organ systems (Fig. 2e).

For the brain, advanced gray matter age leads to faster aging of 
functional brain connectivity (each 1-year increase in gray matter age 
at baseline leads to 28 d per year increase in the rate of aging of FC), but 
not the converse. A positive feedback loop is evident between FC and 
white matter (Fig. 2f). Patterns of interorgan synchrony in biological 
age are shown in Extended Data Fig. 3 and SEM estimates are provided 
in Supplementary Table 5.

Genetic, environmental and lifestyle links with organ age
We next investigated genetic and environmental factors associated 
with organ age. Partial correlations were used to test for associations 
between organ-specific age gaps and 158 environmental/lifestyle 
measures, leukocyte telomere length and polygenic scores indexing 
leukocyte telomere length (Methods). Several environmental and 
lifestyle factors explain significant variation in the biological age of 
multiple organs (P < 2.6 × 10−5, Bonferroni-corrected for 158 factors × 12 
organ systems = 1,896 tests; Supplementary Table 6). For most body 
systems (Fig. 3), individuals appearing older than same-aged peers 
were more likely to have smoked tobacco, consumed more alcohol and 
experienced long-standing illness, had menopause early in life and lived 
in areas of greater socioeconomic inequality. In contrast, those who 
exercised (faster than usual walking pace), had a larger birth weight, 
completed tertiary education and were older at first live birth were 
more likely to appear younger. Some lifestyle factors exclusively associ-
ate with organ-specific age gaps. For example, advanced pulmonary 
system age associates with exposure to air pollution, but not natural/
green environments. Advanced brain age most strongly associates 
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Fig. 3 | Environmental/lifestyle associations with biological organ age. 
Icons represent organ systems for which biological age was estimated. Links are 
shown between environmental/lifestyle factors significantly associated with 
organ-specific age gaps (P < 2.6 × 10−5, two-sided, t-test, Bonferroni-corrected). 
Links are suppressed for small effect sizes (|r| < 0.05). Left (right) list consists 
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in Supplementary Fig. 1.
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with smoking, alcohol consumption, long-standing illness and hearing 
loss. Notably, advanced cognitive age not only significantly associates 
with advanced brain age, but also with advanced age of several body 
systems, including pulmonary and musculoskeletal systems. Asso-
ciations with tissue-specific brain age are shown in Supplementary 
Fig. 1. Shorter leukocyte telomere lengths weakly associate with older 
body (r = −0.033, P = 2.5 × 10−34), pulmonary (r = −0.023, P = 1.1 × 10−17), 
immune (r = −0.037, P = 2.4 × 10−42) and renal (r = −0.02, P = 7.3 × 10−14) 
age gaps. Similarly, polygenic scores indexing leukocyte telomere 
length weakly associate with cardiovascular (r = 0.014, P = 2.7 × 10−7), 
pulmonary (r = 0.016, P = 1.5 × 10−9), immune (r = −0.015, P < 2.0 × 10−8) 
and renal (r = −0.012, P = 1.7 × 10−5) age gaps.

Biological organ age and chronic disease
To investigate the relationship between biological age and chronic 
disease risk, individuals with a lifetime diagnosis of a chronic disease 
were grouped into 16 disease categories: Parkinsonism, multiple scle-
rosis, stroke, dementia, depression, bipolar disorder, schizophrenia, 
ischemic heart disease, hypertensive diseases, chronic obstructive 
pulmonary disease (COPD), chronic kidney disease (CKD), diabetes, 
cirrhosis, osteoarthritis, osteoporosis and cancer. Additional datasets 
independent of the UK Biobank were sourced to establish mild cognitive 
impairment (MCI) and validation dementia cohorts. Disease categories 
were selected based on lifelong contribution to brain-associated illness 
burden (depression, bipolar disorder and schizophrenia) or substan-
tial health burden in older adults, including disability and premature 
mortality25. Using the preceding normative models established for 
healthy individuals, biological age was estimated for each body and 
brain system and disease category.

Body and brain systems of individuals with chronic disease are 
significantly older on average than same-aged healthy peers (body, 
0.71–6.15 years older; brain, 0.68–4.64 years older). Individuals with 
CKD have the oldest body ages (mean age gap of 6.15 ± 9.32 years) of all 
16 disease categories, whereas Parkinsonism associates with advanced 
body age the least (mean age gap of 0.71 ± 5.04 years). Marked hetero-
geneity in organ-specific ages is evident between and within diseases. 
Figure 4 shows organs with mean age gaps significantly different from 
zero in each disease group (P < 2.6 × 10−4, Bonferroni-corrected for 16 
diseases × 12 organs = 192 tests). Organs primarily affected by disease 
pathology generally show the largest ages gaps on average (Extended 
Data Fig. 4) and show the largest effect sizes (Extended Data Fig. 5). 
For example, renal, pulmonary, metabolic and hepatic systems are the 
oldest in CKD (8.03 ± 11.73 years, Cohen’s d = 0.92), COPD (6.19 ± 6.03 
years, Cohen’s d = 1.26), diabetes (5.17 ± 7.34 years, Cohen’s d = 0.91) 
and cirrhosis (4.29 ± 10.21 years, Cohen’s d = 0.57), respectively. Nota-
bly, for many disease categories, organs not typically implicated with 
disease-specific processes also show evidence of advanced biological 
age. For example, whereas advanced brain age is evident for most major 
brain disorders, such as multiple sclerosis (4.64 ± 5.39 years, Cohen’s 
d = 1.06), dementia (3.52 ± 5.19 years, Cohen’s d = 0.75) and Parkinson-
ism (2.26 ± 4.54 years, Cohen’s d = 0.58), individuals with non-brain 
disorders such as diabetes (2.14 ± 3.60 years, Cohen’s d = 0.65), CKD 
(1.66 ± 3.56 years, Cohen’s d = 0.50) and COPD (1.65 ± 3.86 years, 
Cohen’s d = 0.48) also show significantly advanced brain age (Fig. 4 
and Extended Data Fig. 4) with moderate effect sizes (Extended Data 
Fig. 5). CKD-related advanced body and renal ages were replicated in 
a subgroup of individuals (n = 2,168, body, 5.85 ± 8.84 years; renal, 
7.62 ± 11.08 years) who had not progressed to the end-stage renal dis-
ease. Dementia-related advanced brain age was replicated using two 
additional cohorts (n = 284, 3.19 ± 6.13 years, t = 16.94, P < 2.23 × 10−308). 
Brain aging was less pronounced in MCI (n = 780, 1.07 ± 4.25 years) 
than dementia (t = 10.39, P = 3.56 × 10−25), but significantly greater 
than same-aged healthy peers (t = 10.39, P = 3.56 × 10−25, Extended 
Data Fig. 2). Although rare, some body systems are marginally younger 
than their chronological age for specific disease categories, including 

the cardiovascular (schizophrenia), hepatic (diabetes, hypertensive 
diseases and osteoporosis) and metabolic (osteoporosis and Parkin-
sonism) systems (Fig. 4b). Disease comorbidity does not explain het-
erogeneity in organ-specific age across brain versus non-brain disease 
categories (Extended Data Fig. 6).

We tested whether diagnostic markers confound the interpreta-
tion of disease-related aging effects. The exclusion of diagnostic mark-
ers for diabetes (HbA1c) and CKD (cystatin C and creatinine) from the 
metabolic and renal aging models, respectively, did lead to decreases 
in prediction accuracy of chronological age; however, significantly 
advanced age of the metabolic and renal systems in diabetes and CKD 
remained evident after these exclusions (Methods).

Given that some hallmarks of biological aging are also patho-
logical features of aging-related diseases8, we hypothesized that 
phenotypic variation related to chronological age would covary with 
disease-related phenotypic variation. Consistent with this hypothesis, 
estimated feature weights of the predictive models of chronological 
age (one weight per phenotype; number of phenotypes, body, n = 78; 
brain, n = 2,309) significantly associate with disease-related pheno-
typic variation (body, female/male, r = 0.43/0.39; brain, female/male, 
r = 0.47/0.52, P < 0.0001; Fig. 5a and stratified by disease in Supple-
mentary Fig. 2).

Biological organ age relates to disease progression
For each disease category, we divided individuals into prodromal and 
established disease groups, based on the date of first diagnosis (if 
known) and the date of baseline assessment of body and brain function. 
Individuals who did not experience disease onset or diagnosis before 
the time of baseline assessment were considered as prodromal. Several 
organ systems of the prodromal groups are significantly older than 
same-aged healthy peers (Extended Data Fig. 7a), although mean age 
gaps are larger for individuals with established diagnoses, compared to 
prodromal individuals (Extended Data Fig. 7b). Hence, advanced body 
age predates disease diagnosis. Furthermore, between-group differ-
ences in mean age gaps (prodromal versus established diagnoses) for 
several body systems and diseases are significantly larger in groups with 
established diagnoses, compared to prodromal groups (P < 2.6 × 10−4, 
Bonferroni-corrected for 12 organs × 16 diseases = 192 tests), although 
effect sizes are modest (Fig. 5b). These effects are greatest in CKD (renal, 
10.8 ± 1.2 years older), cirrhosis (musculoskeletal, 3.1 ± 0.8 years) and 
diabetes (metabolic, 2.9 ± 0.1 years), where body systems are signifi-
cantly older in established compared to prodromal groups.

The rate of change in age gaps significantly associates with 
the average age gap over the two assessment time points in indi-
viduals with chronic disease (body, β = 0.21, P = 0.01; brain, β = 0.44, 
P = 4.4 × 10−6; Fig. 5c). This suggests disease-related faster body and 
brain aging, where each 1-year increase in the mean body (brain) age 
gap associates with a 0.21 (0.44) months per year increase in the rate 
of body (brain) aging. On the contrary, the rate of aging is constant in 
healthy individuals (body, β = 0.07, P = 0.74; brain: β = −0.08, P = 0.66). 
Faster aging is evident for multiple organ systems in ischemic heart 
disease, hypertensive diseases, diabetes, osteoarthritis and can-
cer (P < 0.05, FDR-corrected across six disease groups × 12 organ 
systems = 72 tests). Depression shows no evidence of faster aging 
(P > 0.05; Fig. 5d).

Biological organ age predicts mortality risk
We sought to predict risk of mortality using body and brain age gaps. 
Mortality was determined using data linkages to national death reg-
istries in the UK. Cancer (29.6%), circulatory (26.7%) and respiratory 
(11.8%) diseases were the three main causes of death (Supplemen-
tary Fig. 3). Survival after baseline assessment was ascertained up 
to 13.41 years for body (n = 8,109, age of death 42–83 years, mean 
69.6 ± 7.3, 5,670 males) and 6.07 years for brain (n = 330, age of 
death 53–82 years, mean 70.7 ± 6.4, 203 males). Body (2.95 ± 6.56 
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versus 0.57 ± 4.44 years, P < 0.0056, Bonferroni-corrected for nine 
body ages) and brain (1.72 ± 4.07 versus 0.48 ± 3.31 years, P < 0.0125, 
Bonferroni-corrected for four brain ages) age gaps significantly differ 

between deceased and surviving individuals. Between-group differ-
ences are also evident for specific body (Fig. 6a) and brain systems 
(Supplementary Fig. 4a).
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Fig. 4 | Body and brain age in chronic disease. a, Distribution of body and 
brain age gaps (columns) for 16 disease categories (rows), compared to healthy 
individuals (HC). Distributions are colored according to disease- and organ-
specific mean age gaps. Colored distributions have a mean that significantly 
differs from the healthy group (P < 2.6 × 10−4, two-sided, t-test, Bonferroni-
corrected). Despite significant between-group differences, considerable overlap 
in distributions between disease categories and healthy individuals suggests that 
factors other than diagnostic status manifest notable heterogeneity of biological 
age among individuals in the same category. Distributions colored gray have a 

mean that is not significantly different from the healthy group. The three axis 
ticks on the horizontal axis from left to right for each distribution correspond 
to age gaps of −5, 0 and 5 years. b, Icons representing body systems and organs 
are positioned to indicate the mean age gap for each disease category. Icons are 
not shown for organs with age gaps that do not significantly differ from zero. 
Organs with age gaps exceeding 5 years are truncated to 5 years for visualization 
purposes. Disease categories are ordered from top to bottom according to 
increasing body age gap.
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Cox proportional hazards regression, where survival durations 
were right-censored for living individuals (body, n = 135,314; brain, 
n = 36,571), reveal that body age (Fig. 6b,c and Supplementary Table 9), 
but not brain age (Supplementary Fig. 4b,c and Supplementary Table 10)  
is a significant predictor of mortality. In particular, adjusting for 
chronological age and sex, each 1 × s.d. increase in a person’s organ age 
associates with a 7.3% (body, hazard ratio (HR) 1.073, 95% confidence 
interval (CI) 1.037–1.136, P = 2.2 × 10−6), 3.6% (cardiovascular, HR 1.036, 
95% CI 1.014–1.056, P = 2.7 × 10−3), 24.0% (pulmonary, HR 1.24, 95% CI 
1.210–1.262, P = 2.6 × 10−89), 5.9% (immune, HR 1.059, 95% CI 1.045–1.078, 
P = 1.0 × 10−31), 15.1% (renal, HR 1.151, 95% CI 1.116–1.183, P = 3.0 × 10−24), 
7.9% (hepatic, HR 1.079, 95% CI 1.051–1.104, P = 1.9 × 10−10) and 7.1% 
(metabolic, HR 1.071, 95% CI 1.043–1.091, P = 3.2 × 10−9) relative increase 

in the risk of mortality (area under the curve (AUC) = 0.75, loglikeli-
hood = −9.19 ± 104; Fig. 6b). This model significantly outperformed a 
baseline mortality model including only chronological age and sex 
(AUC = 0.72, loglikelihood = −9.29 ± 104, χ2 = 1.86 ± 103, P < 2.23 × 10−308). 
Several body systems (pulmonary, immune, renal and hepatic) remain 
significant mortality predictors, when controlling for existing disease 
diagnoses (Supplementary Fig. 5). A regression model including chron-
ological age, sex, all eight body age gaps, existing disease diagnoses, 
general health (long-standing illness and disability) and key environ-
mental/lifestyle factors such as smoking, exercise, tertiary education 
and socioeconomic inequality yielded the most accurate (AUC = 0.771) 
and best fitting model of mortality risk (loglikelihood = −8.97 ± 104, 
χ2 = 4.98 ± 103, P < 2.23 × 10−308; Fig. 6c). After controlling for the 
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coefficient. Supplementary Fig. 2 shows stratification by disease category. 
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indicating associations surviving FDR correction of 5%.
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above covariates, the composite body age gap outperformed all 
organ-specific age gaps in explaining mortality hazard, suggesting 
that these factors are significant confounds. Replacing body age gaps 
with body phenotypes associated with mortality, including systolic 
blood pressure26, forced expiratory volume in 1 s (FEV1)27, handgrip 
strength28, C-reactive protein29, serum creatinine30, serum alanine and 
aspartate aminotransferase31 and the total/high-density lipoprotein 
cholesterol ratio32 did not improve the model accuracy (AUC = 0.770) 
and fit (loglikelihood = −8.98 × 104; Supplementary Table 11). Similarly, 
replacing brain age gaps with several global brain measures, including 
whole brain volume of gray matter, cerebrospinal fluid, white matter, 
white matter hyperintensity load and mean cortical thickness, mean 
fractional anisotropy and mean diffusivity did not improve the model 
(AUC = 0.722, loglikelihood = −3.14 × 103; Supplementary Table 12). 
Mortality risk associated with body (Supplementary Fig. 6) and brain 
(Supplementary Fig. 7) age remained largely unchanged after exclud-
ing deaths subsequent to the date of coronavirus disease (COVID-19) 
emergence in the UK33 (n = 1,033 for body age and n = 127 for brain age 
analyses), suggesting that COVID-19 did not significantly confound our 
mortality risk estimation models. Further analyses of mortality due to 
specific disease cause, including cancer (AUC = 0.75; Supplementary 
Fig. 8a), circulatory diseases (AUC = 0.84; Supplementary Fig. 8b) and 
respiratory diseases (AUC = 0.86; Supplementary Fig. 8c) reveal similar 
results, where pulmonary, immune and renal age remain significant 

predictors for all three causes of mortality (Supplementary Table 13). 
Finally, logistic models were developed to predict survival time (5 years, 
AUC = 0.774 ± 0.006; 10 years, AUC = 0.770 ± 0.003) and premature 
mortality (death before 70 years old, AUC = 0.86 ± 0.003; 75 years 
old, AUC = 0.86 ± 0.003) using body age gaps (Extended Data Fig. 8).

Discussion
By establishing normative models of aging-related decline for mul-
tiple brain and body systems in the world’s largest population-based 
biobank, we showed that aging is a complex, multisystem process, 
whereby the biological age of one organ system selectively influ-
ences the aging of multiple other systems via characteristic aging 
pathways. While biological aging is an established concept12–14 and 
earlier studies establish aging clocks for individual organs, includ-
ing the kidneys34, heart35, lungs36, skin and blood37, we derived the 
first whole-body multiorgan characterization of aging. Our organ 
clocks enabled elucidation of unique organ age profiles for 16 chronic 
diseases and discovery of modifiable factors that can potentially lead 
to disease-specific longevity interventions targeted at specific body 
systems, ultimately extending lifespan.

Our work enhances the clinical utility of proxy measures of 
aging developed for older individuals, such as frailty indices38, as 
well as existing DNA methylation (epigenetic) clocks39,40. While epi-
genetic clocks are clinically useful and provide important insights 
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HRs per 1 × s.d. increase in organ-specific age (left) and corresponding z scores 
(right). Chronological age and sex are included in the regression. Error bars 
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existing disease diagnoses, general health and key lifestyle factors are included 
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into aging biology across tissue types, it is now recognized that aging 
varies markedly between organ systems and tissues, particularly in 
disease41. Bespoke organ and disease-specific aging clocks are thus 
needed to enhance the clinical utility of existing pan-tissue clocks, 
which do not readily differentiate between tissue components and 
body systems15. Addressing this need, we showed that deviations 
from expected aging-related decline can be detected in certain 
organs (but not all) years before disease diagnosis. These devia-
tions predict mortality, even after controlling for chronological age, 
disease burden and other risk factors. Our organ clocks could thus 
be used to identify individuals in midlife, before disease onset, who 
may benefit from early interventions aimed at slowing the aging of 
specific body systems and organs.

Crucially, as with the frailty indices38, many of the biological mark-
ers that inform our organ clocks are already widely assayed in primary 
care (for example, full blood counts, renal and liver function, blood 
pressure, lipids and glucose), are readily accessible at minimal cost 
(forced respiration, grip strength and waist circumference) or are 
accessible and cost-effective when benchmarked against the burden 
of chronic illness (brain magnetic resonance imaging (MRI) scans). 
Alongside the relatively modest computational burden of the model 
algorithms (especially when pretrained), these considerations argue 
for direct, cost-effective and feasible clinical implementation of organ 
age in primary care.

Our investigation into environmental and lifestyle factors can 
inform real-world personalized interventions targeted at specific 
body systems, through change of lifestyle, such as limiting tobacco 
smoking and alcohol intake, exercise, education, sleep hygiene and 
maternal nutrition, as well as efforts requiring national inputs such as 
reductions in socioeconomic inequality and air pollution, and improve-
ments in residential greenspace and natural environment coverage. 
Studying the impact of such interventions would provide causal evi-
dence for the conditional effects presently reported. The pulmonary, 
metabolic and immune systems are promising organ-specific targets 
for interventions, given that these systems influence the rate of aging 
of multiple body systems (cardiovascular and musculoskeletal), via 
interorgan aging pathways (Fig. 2e). Notably, the aging pathway linking 
pulmonary, cardiovascular and musculoskeletal systems recapitu-
lates the known epidemiological link between impaired lung function, 
weak muscle strength and elevated risk of adverse cardiovascular out-
comes27,28. While aging-related brain gray matter loss is expected42, we 
found that advanced gray matter age substantially influences the rate 
of aging-related decline in brain connectivity, but not the converse (Fig. 
2f). Given that body phenotypes were measured several years before 
brain phenotypes (4–14 years earlier; Fig. 2c), the estimated influence of 
advanced body age, particularly of the cardiovascular system on brain 
age (Fig. 2d), may thus reveal early signs of brain aging.

While the organs that manifest primary disease processes seem the 
oldest in individuals with the disease, we found that advanced organ 
age is widespread, involving multiple body and brain systems. Brain 
systems of individuals with non-brain disorders, including diabetes, 
chronic kidney, pulmonary and cardiovascular diseases seem sig-
nificantly older than same-aged healthy peers, whereas body systems, 
particularly pulmonary and renal systems, show signs of advanced 
aging in individuals primarily diagnosed with major brain disorders, 
including schizophrenia, dementia, bipolar disorder, depression, 
multiple sclerosis and Parkinsonism. It is important to acknowledge 
that some of our clocks are informed by diagnostic markers, which 
may potentially confound the interpretation of disease-related differ-
ences in biological age; however, confounding can be ruled out for the 
above examples where advanced age is evident for organs that are not 
informed by diagnostic markers relevant to the disease under consid-
eration. Furthermore, excluding key diagnostic markers reduced model 
performance but did not alter our conclusions about the association 
between disease and organ aging.

Chronological age and male sex were found to be the two strong-
est mortality risk factors, consistent with previous literature43,44. After 
controlling for these two factors, organ ages remained strong mortality 
risk factors, particularly pulmonary age, followed by ages of the renal, 
hepatic, metabolic, immune and cardiovascular systems. Individuals 
who subsequently died had older-appearing brains compared to those 
who survived, consistent with a previous study examining brain age 
and mortality45; however, advanced brain age did not predict increased 
risk of mortality. This may be due to the relatively low mortality rate in 
individuals with brain age estimates in the UK Biobank (mortality rate, 
330 of 36,901 = 0.0089) compared to the Lothian Birth Cohort 1936 
used by Cole and colleagues (mortality rate, 73 of 669 = 0.11). Contin-
ued follow-up of UK Biobank participants will likely yield more insight 
into the relationship between brain aging and mortality.

Advanced pulmonary age was the strongest predictor of mortality 
(HR 1.24), consistent with epidemiological observations of associations 
between impaired lung function and increased risk of mortality27. While 
reduced muscle strength, measured by handgrip strength, is commonly 
associated with increased risk of mortality46, older musculoskeletal 
age was not a significant risk factor of mortality when controlling for 
chronological age, sex and the age gaps of other organs. This is con-
sistent with the configuration of the multiorgan aging network, where 
the musculoskeletal system is a central hub, influenced by the extent 
of aging of most other organ systems. The mortality risk explained 
by musculoskeletal aging may thus be attributable to the biological 
age of other body systems. Advanced age of the pulmonary, immune, 
renal and hepatic systems significantly raises a person’s mortality risk, 
beyond that explained by existing chronic diseases, chronological age 
and sex (Fig. 6). Whereas disease conditions that primarily affect these 
organ systems are common causes of death25, our results demonstrate 
the uniqueness of biological age in explaining all-cause mortality, 
regardless of existing diseases.

The divergence of an organ’s biological age from chronological age 
may emerge early in life and widen over the lifespan, increasing the risk 
of chronic disease and mortality; however, the rate of aging reported 
here more specifically reflects aging-related decline rather than early 
life events. Interventions designed to delay the rate of organ aging may 
thus effectively delay disease onset, resulting in an extended healthy 
lifespan. Further study is needed to determine whether interventions 
informed by the observational evidence reported here can reduce these 
risks and potentially slow organ aging in at-risk individuals. Further 
work is also needed to determine the genetic influences on our organ 
clocks. We showed that leukocyte telomere lengths and genetic vari-
ants known to index leukocyte telomere length weakly associate with 
several body ages. This complements a recent study13 showing the 
importance of the immune system (major histocompatibility complex 
on chromosome 6) and DNA repair pathways in aging.

Our work addresses several recently identified challenges hinder-
ing the clinical translation of biological aging research15,19. We estab-
lished bespoke clocks that measure the biological age of specific brain 
and body systems using markers that are routinely assayed in primary 
care, elucidated organ age profiles for prevalent chronic diseases 
and identified modifiable factors that can inform new strategies to 
potentially limit organ-specific aging. Our work maps a multiorgan 
aging network for the human body.

Several caveats pertain to our findings. First, biological aging is 
multifaceted. As such, it is unlikely that a single index of organ aging 
will be sufficient and conclusive. As with the continued refinement of 
epigenetic clocks over the last decade39,47–49, and ongoing deliberations 
about how to define frailty in older people38,50, standardized measures 
of organ age remain to be developed. Second, body phenotypes were 
measured several years before brain phenotypes in the UK Biobank. 
Due to the sequential and non-randomized participant assessment 
schedule, we were unable to assess the influence of brain aging on body 
systems. Future investigations, leveraging multiple cohort waves, may 
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reveal bidirectional brain-body influences. Third, most participants 
enrolled in the UK Biobank are from a white ethnic background. Inclu-
sion of participants from a diversity of ethnicities, demographic and 
socioeconomic backgrounds will be required to assess the generaliz-
ability of our current finding. Finally, some imaging modalities (for 
example, carotid imaging) were only acquired in select individuals, 
limiting the data available for some organ clocks. Clinical translation 
could proceed by adding these to clinical assays, and/or removing 
others based upon the tradeoff between their added predictive value 
versus their cost.
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Methods
Participants
Individuals (n = 502,504; 229,122 males) participating in the UK 
Biobank51 were analyzed for the primary study (project ID 60698). 
They were aged 37–73 years at the time of recruitment (2006–2010) 
and underwent extensive questionaries, physical assessments, blood 
and urine sample assays and genome-wide genotyping at 22 assess-
ment centers throughout the UK. A subset of individuals (n = 20,345; 
9,938 males) was followed up during 2012–2013 for repeated physi-
cal and physiological assessments. Multimodal brain imaging52 was 
acquired during the third visit (2014–2020) at three mirrored imaging 
centers located at Manchester, Reading and Newcastle, respectively, 
in 49,002 individuals (23,710 males). Follow-up brain imaging was 
conducted from 2019 onwards in 1,503 individuals (754 males), provid-
ing a longitudinal sample enabling estimation of the rate of change in 
biological age. An assessment timeline is shown in Fig. 2c. Each step in 
the assessment and processing of biological samples was handled and 
monitored centrally to minimize biases across recruitment centers. 
We found that biological age (age gaps) showed negligible site-related 
(Supplementary Fig. 9), ethnicity-related (Supplementary Fig. 10) 
and longitudinal subsampling-related (Supplementary Fig. 11) varia-
tion. The UK Biobank has approval from the North West Multi-centre 
Research Ethics Committee to obtain and disseminate data and samples 
from the participants (http://www.ukbiobank.ac.uk/ethics/). Written 
informed consent was obtained from all participants. Details of partici-
pants consisting of the independent validation cohorts are described 
below (see Replication of brain age prediction in additional datasets).

Body age phenotypes
Physical and physiological measures known to index the function, 
structure and/or general health of the cardiovascular, pulmonary, 
musculoskeletal, immune, renal, hepatic and metabolic systems were 
selected, resulting in 101 organ-specific phenotypes. Physical meas-
ures included standing height, weight, body mass index (BMI), hip 
and waist circumferences, handgrip strength, ultrasound heel bone 
densitometry, spirometry and cardiorespiratory fitness. Physiologi-
cal assessments included blood pressure, pulse rate, arterial stiffness, 
blood hematology and blood and urine biochemical assays. Further 
steps included:

	1.	 Averaging measures if tested for left and/or right side of the 
body, such as handgrip strength, heel bone mineral density and 
ankle spacing width.

	2.	 Averaging measures if tested more than once at the same visit, 
such as diastolic and systolic blood pressure and pulse rate 
were each measured twice.

	3.	 Selecting the best performance among multiple repeated tests 
at the same visit, such as spirometry test for lung function, 
including forced vital capacity (FVC), FEV1 and peak expira-
tory flow (PEF). Each participant was asked to conduct up to 
three blows (lasting for at least 6 s) within a period of approxi-
mately 6 min. The quality of each blow result was automatically 
detected by the device and only the best performing blow of 
acceptable quality was selected. The FEV1:FVC ratio was also 
computed and used for body age estimation.

	4.	 Excluding measures with missing responses in more than 30% 
of individuals. As such, measures of cardiorespiratory fitness 
(missing proportion, 85%), arterial stiffness (69%), urine micro-
albumin (76%), blood estradiol (79%) and rheumatoid factor 
(93%) were excluded.

This resulted in 78 body phenotypes for chronological age pre-
diction (Supplementary Table 1). Participants with missing responses 
for any of the 78 phenotypes were then excluded, resulting in a final 
sample consisting of 143,423 individuals (age range 39–73 years, mean 
56.7 ± 8.2 at the baseline assessment of body function, 79,980 males). 

Follow-up data were available in 1,220 individuals (age range 44–75 
years, mean 61.6 ± 7.7 at the second visit, 837 males) at 2.1–5.6 years 
follow-up. Phenotypes were grouped based on relevance to the struc-
ture and function of each organ systems, forming seven phenotype 
groups. A predictive model of chronological age was established using 
all phenotypes comprising a given organ-specific phenotype group 
(see below). Additionally, a whole-body predictive model was estab-
lished using all body phenotypes, irrespective of organ grouping. Key 
measures used to assess individual organ function are as follows (also 
see Fig. 1a):

•	 Cardiovascular system: pulse rate, systolic blood pressure and 
diastolic blood pressure.

•	 Pulmonary system: FVC, FEV1, PEF and FEV1:FVC ratio.
•	 Musculoskeletal system: handgrip strength, standing height, 

weight, BMI, waist and hip circumference, waist:hip circumfer-
ence ratio, heal bone mineral density, ankle spacing width, 
blood biochemical markers such as phosphatase, calcium, 
phosphate and vitamin D.

•	 Immune system: C-reactive protein and blood hematology tests 
of leukocytes, erythrocytes, thrombocytes and hemoglobin.

•	 Renal system: biomarkers associated with glomerular filtration 
and electrolyte regulation, including creatinine (enzymatic), 
potassium and sodium in urine, albumin, urea, urate, creatinine, 
cystatin C, phosphate and total protein in blood.

•	 Hepatic system: alanine aminotransferase, aspartate ami-
notransferase, γ-glutamyl transferase, direct and total bilirubin, 
albumin, alkaline phosphatase and total protein in blood.

•	 Metabolic system: blood biomarkers associated with lipids and 
glucose metabolism, including apolipoprotein A, apolipopro-
tein B, cholesterol, glucose, glycated hemoglobin, high-density 
lipoprotein cholesterol, direct low-density lipoprotein choles-
terol, lipoprotein A and triglycerides.

Several blood biomarkers, including insulin-like growth factor 
1, testosterone and sex hormone-binding globulin were not assigned 
to any of the seven systems and were only used for overall body age 
gap estimation. Post-hoc analysis was performed to investigate 
the potential confounding effect of antihypertensive medications 
(angiotensin-converting enzyme inhibitors, angiotensin receptor 
blockers, beta-blockers, calcium channel blockers and thiazide diu-
retic agents) on the estimation of cardiovascular age. This grouping of 
medication categories is consistent with a previous UK Biobank study53. 
Adjusting for chronological age and sex, we found no significant differ-
ence in the estimated cardiovascular age between individuals who regu-
larly take antihypertensive medications (mean age gap = 0.32 ± 3.58 
years) and individuals who do not take any antihypertensive medica-
tions (mean age gap = 0.46 ± 3.94 years, t = 1.04, P = 0.29), suggesting 
that antihypertensive medications are not significant confounds.

Brain age phenotypes
Structural and functional brain phenotypes (n = 2,309; Supplemen-
tary Table 2) derived from three neuroimaging modalities, including 
T1-weighted MRI, diffusion MRI (dMRI) and resting-state functional MRI 
(fMRI) were sourced from the UK Biobank52,54. The image processing 
pipeline, artifact removal, cross-modality and cross-individual image 
alignment, quality control and phenotype calculation are described in 
detail in the central UK Biobank brain imaging documentation (https://
biobank.ctsu.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf) and 
by Alfaro-Almagro and colleagues54. Participants with missing entries 
for any of the 2,309 phenotypes were discarded, resulting in a final 
sample consisting of 36,901 individuals (age range 45–82 years, mean 
64.2 ± 7.5 at the first imaging visit, 17,203 males) for brain age analyses. 
Repeated brain imaging phenotypes were available in 1,294 individuals 
(age range 50–83 years, mean 65.2 ± 7.2 at the second imaging visit, 632 
males) at 2.0–2.7 years follow-up.
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Predictive models of chronological age were established using 
imaging-derived phenotypes (IDPs) pertaining to gray matter struc-
ture, white matter microstructure and brain FC. Additionally, a 
whole-brain predictive model was established using all brain pheno-
types (n = 2,309), irrespective of brain tissue class. IDPs used to assess 
individual brain systems are as follows:

•	 Gray matter: regional gray matter volume, cortical thickness and 
surface area, as derived from T1-weighted MRI (number of IDPs, 
578).

•	 White matter: dMRI-derived microstructural measures of white 
matter tracts including mean fractional anisotropy and mean 
diffusivity (number of IDPs, 92)

•	 Brain FC: connectivity strengths between 55 functional brain 
networks derived from resting-state fMRI (IDPs, 1,485 connec-
tion pairs).

Other IDPs such as regional gray/white matter intensity contrast 
from T1-weighted MRI and volumes of ventricles were only included 
in the whole-brain predictive model.

Cognitive phenotypes
Cognitive tests assessing reasoning, memory, attention, processing 
speed and executive function were conducted on the same day of 
brain imaging in 45,930 individuals (22,307 males). A predictive model 
of chronological age was established using 29 distinct measures of 
cognitive performance (Supplementary Table 3). Dummy variables 
were generated for categorical responses. Several cognitive tests, 
including trail making, matrix pattern completion, tower rearranging 
and symbol digit substitution test were only added to the assessment 
battery from 2016 onwards, resulting in an incomplete assessment for 
some participants. These participants were omitted, yielding a final 
sample consisting of 32,317 individuals (age range 45–82 years, mean 
65.1 ± 7.6, 15,712 males) for cognitive age analyses.

Normative aging models
Support vector machines (SVMs) were trained to predict an individual’s 
chronological age using body (n = 28,589, age range 40–70 years, 
mean 52.7 ± 7.8, 15,444 males), brain (n = 7,922, age range 46–82 years, 
mean 61.8 ± 7.3, 3624 males) and cognitive (n = 7,167, age range 47–82 
years, mean 62.6 ± 7.3, 3,357 males) phenotypes in healthy individu-
als, defined as no self-reported and healthcare-documented lifetime 
chronic medical conditions (see section on Health outcomes and clini-
cal characterization). Compared to linear regression, SVM regression 
can provide improved robustness to outliers and overfitting. It auto-
matically learns the relative value of each phenotype toward predict-
ing age and fits a hyperplane to the phenotype data. Using 20-fold 
cross-validation, predictive models were developed for each body 
(n = 8) and brain (n = 4) system as well as for cognitive performance 
(Fig. 2b). Separate models were trained for males and females. Each 
model accepted an individual’s organ-specific phenotypes and yielded 
an estimate of chronological age based on these phenotype inputs. 
Individuals were thus characterized by 12 organ-specific predictions 
of chronological age.

For each 20-fold cross-validation iteration, a linear SVM was 
trained to predict chronological age using individuals consisting of 19 
folds (training set). The fitted regression coefficients (feature weights) 
were then applied iteratively to the held-out set of individuals (test set), 
resulting in a predicted chronological age for each healthy individual. 
In this way, the prediction model was never trained using the same 
individuals for which it was applied to predict age, minimizing the 
risk of overfitting. All measures except for categorical variables were 
standardized by weighted column mean and s.d., computed within 
the training set before each iteration of model training. For all mod-
els, the SVM box constraint and kernel scale were set to unity, and the 
half-width of the epsilon-insensitive band was set to a tenth of the s.d. 

of the interquartile range of the predicted variable (chronological age). 
The SVM was solved using sequential minimal optimization, using a gap 
tolerance of 0.001. More specifically, linear SVM regression involved 
fitting the linear function

f (x) = xβ + b

for each organ system, where x is the matrix of organ-specific pheno-
types (subjects × phenotypes), β is the fitted model coefficients and 
b is the model offset. To estimate β and b for each organ system, the 
following objective function was minimized:

H (β) = 0.5β′β + C
N
∑
n=1

(sn + s∗n)

subject to the constraints ||agen − (xnβ + b)|| ≤ ϵ; agen − (xnβ + b) ≤ ϵ + sn;  
(xnβ + b) − agen ≤ ϵ + s∗n and sn,s∗n ≥ 0 for all individuals n = 1,…N in the 
training dataset. In this formulation, sn and s∗n are the slack variables for 
each individual, ϵ is the model residual and C is the box constraint 
constant (C = 1 in this work). Consistent with recent work55, using a 
nonlinear kernel function (Gaussian or polynomial) did not improve 
model performance. The predicted chronological age of the individual 
with index n comprising the test dataset was given by

âgen = xnβ + b

Model performance was quantified using the Pearson correlation 
coefficient (r) and MAE between predicted and chronological age in the 
test sets. The 20-fold cross-validation procedure was repeated for ten 
trials, randomizing the assignment of individuals to folds for each trial. 
Owing to the large sample size, variation across different train–test 
data splits was negligible (rs.d.<0.002, MAEs.d. < 0.005). Optimization 
of hyperparameters (box constraint, kernel function and ε) did not 
substantially improve performance of the predictive models trained on 
all body or brain phenotypes and thus, hyperparameter optimization 
was not conducted for the organ-specific models.

To determine chance-level prediction accuracy intervals, chron-
ological age was randomly permuted among individuals and each 
organ-specific predictive model was re-trained using the permuted 
data. This was repeated for 5,000 permutations to generate an empiri-
cal null distribution for MAE, under the null hypothesis of an absence of 
predictive utility of body and brain phenotypes on chronological age 
prediction. The observed MAE for all predictive models was less than 
the fifth percentile of the MAE null distribution, enabling rejection of 
the null hypothesis. The FDR was controlled at 5% across all predictive 
models (n = 26) using the Benjamini–Hochberg procedure56.

Prediction accuracies varied considerably between organ systems 
(Fig. 2a). While prediction accuracy often improved with the number 
of features available, this was not always the case. For example, the 
least accurate organ-specific model (immune system) consisted of 
the largest number of features (n = 33), whereas the best performing 
model consisted of 11 phenotypes pertaining to renal function. Models 
developed for the pulmonary (n = 4) and cardiovascular system (n = 3) 
also outperformed the immune system. Prediction accuracy variation 
between organ models could be due to (1) insufficient or inaccurate 
phenotype ensembles to fully characterize an organ’s age-related 
decline; or (2) complex trajectories of age-related decline that are 
nonlinearly related to chronological age. Regarding the latter con-
sideration, deep neural networks and nonlinear learners could have 
improved the prediction accuracies reported here, as suggested in 
recent brain age prediction studies55,57–60. Regarding the former, we 
note that most physiological measures (for example, blood biochem-
istry and urine assays) used in this study are validated with rigorous 
quality control procedures (https://biobank.ctsu.ox.ac.uk/crystal/
ukb/docs/biomarker_issues.pdf) and are commonly used in clinical 
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settings as diagnostic tools to assess organ-specific function and gen-
eral health. For example, elevated serum liver enzyme levels often 
reflect hepatocyte damage or cholestasis61; however, key phenotypes 
for some body systems were unavailable. For example, inflammatory 
cytokines would have enabled a more holistic characterization of 
immune function62, whereas cardiac and carotid imaging would have 
enabled detailed assessment of heart function and atherosclerotic 
plaque morphology63. Of note, cardiac and carotid imaging were not 
primarily used to estimate cardiovascular age in our study as they were 
available from 2014 onwards (third visit) in the UK Biobank. The lack of 
temporal correspondence between cardiac and carotid imaging data 
and other body phenotypes (blood biochemistry and urine assays) 
precluded a concurrent investigation of biological age across multiple 
body systems. In supplementary analyses, we established a revised 
cardiovascular normative model that includes heart MRI and carotid 
ultrasound data and compared the accuracy of the revised model to 
our original cardiovascular model.

We found modest improvement in the age prediction using the 
revised model (12% and 15% reduction in MAE in females and males, 
respectively, Supplementary Fig. 12). This suggests that our original 
model using blood pressure indices and pulse rate provides a reason-
able estimation of cardiovascular age. Recent work13 measures cardio-
vascular age using a combination of blood pressure, blood markers 
(such as glucose and lipids) and physical fitness (such as vital capac-
ity). In contrast, we use blood-derived glucose and lipids and vital 
capacity measures to instead inform aging models of the metabolic 
and pulmonary system, respectively. This exemplifies the need for 
future standardization of organ age measures and we suggest that 
cardiovascular age, as measured by Nie and colleagues13, is based on a 
broader characterization of the cardiovascular system and combines 
some features of our metabolic and pulmonary age models.

In supplementary analyses, we also established revised metabolic 
and renal normative models that exclude diagnostic markers for dia-
betes (HbA1c) and CKD (cystatin C and creatinine), respectively. We 
found that prediction accuracy worsens (without HbA1c: females, 
r = 0.45, MAE = 5.48; males, r = 0.19, MAE = 6.59) compared to our origi-
nal model (with HbA1c: females, r = 0.50, MAE = 5.30; males, r = 0.23, 
MAE = 6.51); however, the metabolic system still shows significantly 
advanced biological age in diabetes (age gap of 0.18 ± 4.64 years, 
t = 6.02, P = 1.79 × 10−9) after excluding this diagnostic marker. Simi-
larly, a model excluding cystatin C and creatinine led to less accurate 
prediction of chronological age (females, r = 0.43, MAE = 5.61; males, 
r = 0.36; MAE = 6.15) compared to our original model (females, r = 0.53, 
MAE = 5.22; males, r = 0.45; MAE = 5.83). Nevertheless, the renal system 
still shows significantly advanced age in CKD (age gap of 3.14 ± 6.32 
years, t = 35.52, P < 2.23 × 10−308) after excluding these two diagnostic 
markers. Age prediction models trained using healthy individuals were 
applied to predict the chronological age of individuals diagnosed with 
one or more diseases (see Health outcomes and clinical characteriza-
tion). For this purpose, all models were re-trained on the full sample 
of healthy individuals.

Age gap index
Subtracting actual chronological age from predicted chronological 
age, referred to as the age gap, provides a normalized measure of the 
extent to which an individual’s organ system appeared older (gap > 0) 
or younger (gap < 0) than same-aged peers of the same sex. Age gaps 
were estimated for each organ, yielding a multiorgan assay of biologi-
cal age for each individual. Chronological age was regressed from all 
estimated age gaps to adjust for regression-toward-the-mean bias64,65 
and the residuals of this regression defined adjusted age gaps. All age 
gaps in this study were adjusted as such. Regressing the square of 
chronological age in addition to chronological age had minimal impact 
on the adjusted age gaps. Regression coefficients for performing age 
gap adjustment were fitted using the training set and then used to 

adjust the age gaps for individuals comprising the test set. Legacy 
studies66–70 typically quantify biological age using a linear combination 
of chronological age and selected physiological phenotypes13,71–73 and 
are sometimes referred to as ‘phenotypic age’12,14,48,74. In contrast, for 
the age gap index used here, chronological age is the prediction target 
(independent variable). An advantage of the age gap index is that it is 
an inherently personalized measure, cross-validated, independent 
of chronological age and thereby directly indexes deviations from 
population norms. Likewise, compared to the commonly used frailty 
index38, which characterizes an overall functional decline in older 
people (usually >65 years) by counting the number of health deficits 
present75, an advantage of the age gap index is that it is an organ-specific 
aging measure applicable across the lifespan.

Longitudinal assessments enabled estimation of the rate of change 
in age gaps, providing organ-specific estimates of the rate of aging3,14. 
Of note, all normative models were trained using phenotypes measured 
at baseline and subsequently applied to predict chronological age in 
the follow-up data. Let gapt0 (years) be the organ age gap estimated 
at baseline, gapt1 (years) be the age gap at follow-up and T be the time 
interval (in years) between baseline and follow-up assessment. The 
rate of aging was estimated as ∆ = 12 × (gapt1 − gapt0) / T, expressed 
in units of months per year. To test for faster organ aging, the rate of 
change, ∆ was regressed against the average age gap (gapt1 + gapt0) / 2, 
and a significant positive association between these quantities across 
individuals provided evidence consistent with faster aging24. The slope 
of the regression line provided an estimate of the putative acceleration 
rate (months / year2). Note that this is effectively a population-level 
estimate and it does not necessarily imply faster or accelerated aging 
for any individual participant.

Replication of brain age prediction in additional datasets
To assess our normative aging model in an older age cohort, we per-
formed supplementary analyses combining brain MRI data from the 
Australian Imaging, Biomarkers and Lifestyle (AIBL) Flagship Study of 
Ageing (n = 650) (https://aibl.csiro.au/) and the Alzheimer’s Disease 
NeuroImaging Initiative (ADNI, n = 1,677) (http://adni.loni.usc.edu/). 
The two cohorts comprise individuals diagnosed with MCI and demen-
tia as well as healthy individuals, thus facilitating external validation for 
our normative brain aging model and the relationship between brain 
age and neurodegenerative diseases.

AIBL study methodology has been reported previously76. The 
AIBL study was approved by the institutional ethics committees of 
Austin Health, St Vincent’s Health, Hollywood Private Hospital and 
Edith Cowan University and all volunteers gave written informed con-
sent before participating in the study. ADNI was launched in 2003 
as a public–private partnership, led by Principal Investigator M.W. 
Weiner. The primary goal of ADNI has been to test whether serial MRI, 
positron emission tomography, other biological markers and clinical 
and neuropsychological assessment can be combined to measure 
the progression of MCI and early Alzheimer’s disease. For up-to-date 
information, see www.adni-info.org. As per ADNI protocols, all pro-
cedures performed in ADNI studies involving human participants 
were in accordance with the ethical standards of the institutional and/
or national research committee and with the 1964 Helsinki Declara-
tion and its later amendments or comparable ethical standards. More 
details can be found at adni.loni.usc.edu.

Details of brain image acquisition can be found elsewhere76,77. 
T1-weighted MRI brain images acquired at baseline assessments were 
used in this study. Consistent with the brain image processing pipeline 
used for the primary cohort (UK Biobank), MRI brain images were 
processed using FreeSurfer v.6 (ref. 78), resulting in 578 regionally 
specific MRI-derived phenotypes representing regional gray matter 
volume, cortical thickness and surface area. The Destrieux atlas79 
was used for cortical parcellation. Additional segmentations of hip-
pocampal subfields80, amygdala81 and thalamic82 nuclei and brainstem 
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substructures83 were performed using FreeSurfer v.7. The quality of the 
T1 images was automatically assessed using the Euler number, an index 
generated by FreeSurfer that measures the topological complexity of 
a reconstructed cortical surface84. Following previous recommenda-
tions85, images with a Euler number less than −217 were associated with 
poor quality and thus discarded (AIBL, n = 111; ADNI, n = 104). Images 
with any MRI-derived phenotypes residing more than 6 × s.d. from the 
median were also discarded (AIBL, n = 7; ADNI, n = 17).

Given the older age range of the AIBL and ADNI cohorts compared 
to the UK Biobank, the normative aging model established in the UK 
Biobank cohort could not be directly applied to the two external data-
sets. We therefore re-trained the brain age prediction model for gray 
matter phenotypes in a combined group of healthy individuals across 
the three datasets. Before model training, data harmonization was 
performed using ComBat (https://github.com/Jfortin1/ComBatHar-
monization)86,87 to control for variation in brain phenotypes due to 
differences in scanners and datasets. Of note, images acquired from 
MRI scanners with fewer than ten scanned individuals were further 
discarded (n = 186, ADNI) to ensure reliable harmonization, resulting in 
532 AIBL (age range 55–96 years, mean 72.4 ± 6.4, 218 males, four scan-
ners) and 1,370 ADNI (age range 50–95 years, mean 72.7 ± 7.5, 656 males, 
76 scanners) individuals for further analyses. Age, sex and diagnostic 
status were included as biological covariates in the harmonization.

Consistent with our main findings in the UK Biobank cohort, we 
found that chronological age could be predicted with high accuracy 
using gray matter phenotypes (female, r = 0.82, MAE = 3.52; male, 
r = 0.85, MAE = 3.41; Extended Data Fig. 2a). Gray matter feature weights 
were highly consistent between the original and the re-trained model 
(female, r = 0.86, P < 2.23 × 10−308; male, r = 0.87, P < 2.23 × 10−308; 
Extended Data Fig. 2b). The re-trained brain age prediction model was 
applied to estimate brain gray matter age for individuals diagnosed MCI 
and dementia. We found that brain age seems significantly older in indi-
viduals diagnosed with MCI (n = 780, mean age gap of 1.07 ± 4.25 years, 
P = 3.56 × 10−25) and dementia (n = 284, mean age gap of 3.19 ± 6.13 years, 
P < 2.23 × 10−308) than same-aged healthy peers (Extended Data Fig. 2c).

Structural equation modeling
SEM was used to infer the influence of each organ’s baseline age gap 
on the follow-up age gap (Fig. 2d) or rate of aging, ∆ (Fig. 2e,f) of other 
organ systems. The fast-greedy equivalence search (FGES) heuristic 
for continuous variables was performed to search for causal Bayesian 
networks and determine the highest scoring model. FGES is a Bayesian 
heuristic that starts with an empty graph and adds edges to improve 
the score function (Bayesian Information Criterion), until no more 
edges can be added. It then performs a backward search that removes 
edges until no edge removal increases the score function88. The search 
was constrained to edge modeling influences consistent with the flow 
of time. To this end, age gaps measured at the same assessment were 
forbidden from influencing each other, age gaps measured at follow-up 
were forbidden from influencing age gaps measured at baseline and 
rates of aging were forbidden from influencing baseline age gaps. 
The FGES heuristic was repeated for 500 bootstrapped samples and 
edges present in 50% of the samples formed a final consensus network 
structure. Regression was used to estimate residual variances and coef-
ficients (β) for the edges consisting of the final consensus network. 
Sex, age at baseline and whole-body (Fig. 2e) and whole-brain (Fig. 2f) 
age gaps were regressed from all organ-specific age gaps and FGES was 
performed on the resulting residuals. The time interval between base-
line and follow-up measurements was also regressed from baseline and 
follow-up age gaps, if appropriate (Fig. 2d). Influences inferred from 
FGES were represented using multiorgan networks, where each organ 
was denoted with a distinct network node. A directed edge was drawn 
from organ X to organ Y only if the age gap of X at baseline significantly 
influenced the follow-up age gap of Y (Fig. 2d) or rate of aging of Y 
(Fig. 2e,f), following FDR correction at 0.05 across the set of J( J − 1) / 2 

regression coefficients, where J denotes the total number of organ 
systems. If an edge was detected by FGES but the edge’s regression 
coefficient did not survive FDR correction, the edge was removed. 
Hence, drawing an edge required both statistical and causal evidence. In  
Fig. 2e,f, a positive regression coefficient provided evidence consistent 
with faster aging of organ Y, relative to organ X (a unit increase in the 
age of X predicted an increase of β in the rate of aging of Y). In Fig. 2e,f, 
the baseline age gap node and rate of aging node were merged into a 
single node for each organ to provide a succinct network representa-
tion for visualization purposes. The Tetrad software package v.6.8.1 
(https://github.com/cmu-phil/tetrad) was used to perform the FGES 
heuristic, bootstrapping and parameter estimation. Default parameter 
settings for FGES were used (Chickering rule; BIC penalty discount of 
0.5; T-depth of −1).

Genetic, environmental and lifestyle factors
Telomere length shortening and human aging are linked89 and thus 
we tested for associations between organ-specific age gaps and the 
relative leukocyte telomere length (adjusted for technical param-
eters90) measured at baseline assessment, as well as genetic variants 
known to index leukocyte telomere length. Following an established 
method91, a polygenic score for leukocyte telomere length was com-
puted for each individual based on nine single-nucleotide poly-
morphisms associated with leukocyte telomere length92–94. Larger 
polygenic scores associate with longer leukocyte telomere length 
and vice versa. Age gaps for body and brain systems were also tested 
for associations with numerous environmental and lifestyle factors. 
We selected 158 variables that tapped individual differences in early 
life experience (for example, birth weight, breastfed, adoption, 
maternal smoking and traumatic events), sociodemographics (for 
example, education, neighborhood measure of deprivation, job sta-
tus and parenting), lifestyle (for example, smoking, alcohol intake, 
diet, exercise, sleep and e-device use), psychosocial (for example, 
social support and mood status), local environmental exposures 
(for example, air and noise pollution, greenspace and coastal prox-
imity), general health (for example, menstrual cycle, menopause, 
long-standing illness and disability, hearing, vision and falls) and 
cognitive ability. Individual variation in cognitive ability was meas-
ured using the cognitive age gap, inferred from the above-described 
cognitive age prediction model. Dummy variables were generated 
for categorical responses. Several variables were curated to enable 
more intuitive interpretation than the native UK Biobank coding. 
The curation procedure includes:
•	 Reponses indicating less than one unit in time, distance, 

frequency and quantity were originally coded as −10 and were 
recoded to 0 for all relevant variables, including food intake 
frequencies, time spent on watching television, using computer 
and driving, distance between home and job workplace, etc.

•	 Individuals who did not provide a valid answer, originally coded 
as −3 (prefer not to answer) or −1 (do not know) were labeled as 
missing responses.

•	 An average weekly alcohol consumption (in UK standard units) 
was computed by combining information on each person’s 
response to questionnaire on weekly and monthly intake of 
a variety of beverage type, including red wine, white wine/
champagne, beer/cider, spirits and fortified wine, consistent 
with previous literature95,96. Specifically, weekly alcohol intake 
data were collected from individuals who indicated that they 
drink more often than once or twice a week, whereas monthly 
alcohol intake was collected from individuals who drink alcohol 
one to three times a month or on special occasions. The alcohol 
consumption of individuals who indicated that they never drink 
was set to zeros.

•	 Reponses to current tobacco smoking: 1, yes, on most or all days; 
2, only occasionally; and 0, no, were recoded to: 2, yes, on most 
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or all days; 1, only occasionally; and 0, no, so that higher scores 
denoted higher frequency of current tobacco smoking.

•	 Responses to past tobacco smoking were originally coded as: 1, 
smoked on most or all days; 2, smoked occasionally; 3, just tried 
once or twice; and 4, I have never smoked. Responses were thus 
reversed so that higher scores denoted higher frequency of past 
tobacco smoking.

•	 Individuals who smoked tobacco on most or all days in the past 
or current were labeled as ‘daily smokers’, notwithstanding 
varied definitions of smokers97.

•	 Time since stopped smoking was computed for past tobacco 
smokers by subtracting ‘age stopped smoking’ from their 
chronological age at the assessment.

•	 Age started smoking in either past or current smokers was 
derived.

•	 An overall fruit and vegetable consumption (per day) was com-
puted by summing fresh fruit, dried fruit, salad, cooked and raw 
vegetables intake98.

•	 Individuals who slept 7–8 h per night were labeled as had ‘good 
sleep duration’99.

•	 Reponses to facial aging were recoded to 1, younger than you 
are; 2, about your age; and 3, older than you are, such that higher 
scores indicated older-appearing faces.

•	 Women who had no regular length of menstrual cycle were 
labeled as had irregular menstrual cycle.

•	 Women who were not sure if they have had menopause because 
of hysterectomy or other reasons were labeled as missing 
responses.

•	 Hearing, as measured by the speech reception threshold, was 
averaged for left and right ears.

•	 Visual acuity, as measured by the logarithm of the minimum 
angle of resolution (logMAR), was averaged for left and right 
eyes.

Supplementary Table 6 provides a full list of selected variables. 
The original UK Biobank field IDs of variables were provided where 
applicable.

Partial correlation was used to test for associations between 
organ-specific age gaps and genetic, environmental and lifestyle fac-
tors, adjusting for chronological age and sex. Due to the very large sam-
ple sizes, statistical significance was Bonferroni-corrected for genetic 
and environmental/lifestyle factors separately at P < 0.004 (12 organ 
systems) and P < 2.6 × 10−5 (158 factors × 12 organ systems = 1,896 tests), 
respectively. A minimum effect size threshold of |r | >0.05 was enforced 
to suppress weak associations for visualization purpose (Fig. 3). Of 
note, Bonferroni correction was used to control the family-wise error 
when sample sizes were very large (>10,000). The FDR was controlled 
at 5% using the Benjamini–Hochberg procedure described elsewhere56.

Health outcomes and clinical characterization
Diagnoses and medical conditions of participants were obtained 
through self-report (verbal interview at assessment centers, UK 
Biobank Field IDs 20001 and 20002) and healthcare records (for exam-
ple, hospital inpatient and primary care) from the UK National Health 
Services (NHS). Hospital inpatient records were summarized by distinct 
International Classification of Diseases and Related Health Problems 
(ICD)-9 and/or ICD-10 coded primary and/or secondary diagnoses 
for participants whose health outcomes resulted in a hospital admis-
sion. Summary inpatient diagnoses (field IDs 41270 and 41271) in the 
July 2020 release were used in this study. Primary care data (field ID 
42040) were sourced at record-level on 26 November 2020. Of note, 
primary care data in relation to clinical events were recorded by health 
professionals working at general practices using Read Codes v.2 (Read 
v.2) and Read Codes Clinical Terms v.3 (Read CTv.3). Diagnoses coded 
in Read were mapped to corresponding ICD codes according to the 

lookup table (‘all_lkps_maps_v2.xlsx’) provided by the UK Biobank 
(https://biobank.ndph.ox.ac.uk/showcase/showcase/auxdata/prima-
rycare_codings.zip). For Read v.2, the mapping was only performed 
when the read code matched to a single ICD-9 or ICD-10 code. For Read 
CTv.3, the mapping was only performed for read code flagged as exact 
one-to-one mapping (‘E’) or target concept more general (‘G’) that had 
been completely refined (‘C’). Whereas self-report provided past and 
current medical conditions, healthcare records enabled a lifetime 
assessment of a participant’s health outcomes.

Based on self-report and healthcare records, we defined a healthy 
aging group and 16 clinical groups consisting of individuals with a life-
time diagnosis of Parkinsonism, multiple sclerosis, stroke, dementia, 
depression, bipolar disorder, schizophrenia, ischemic heart disease, 
hypertensive diseases, COPD, CKD, diabetes, cirrhosis, osteoarthritis, 
osteoporosis and cancer. Each disease category was defined broadly 
with all causes and subtypes included. For example, the COPD group 
included self-reported COPD, emphysema/chronic bronchitis and 
emphysema; healthcare recorded ICD-9 coded emphysema (code 
492) and chronic airway obstruction not elsewhere classified (496) 
and ICD-10 coded emphysema (code J43), MacLeod syndrome ( J430), 
panlobular emphysema ( J431), centrilobular emphysema ( J432), other 
emphysema ( J438), emphysema unspecified ( J439), other COPD ( J44), 
COPD with acute lower respiratory infection ( J440), COPD with acute 
exacerbation unspecified ( J441), other specified COPD ( J448) and 
COPD unspecified ( J449). Supplementary Table 7 lists diagnostic 
codes related to each of the 16 disease categories. For each individual, 
the recorded date of diagnosis was compared across self-report and 
healthcare sources for each disease category, to determine whether 
the illness onset/diagnosis preceded or occurred after the baseline 
assessment of body and brain function; however, the earliest state 
of disease onset for some individuals may have not been captured 
because the data from general practitioners only covered approxi-
mately 45% of the UK Biobank cohort; in contrast to the more than 
87% coverage of hospital inpatient records. To enable comparisons, 
the healthy aging group included individuals with no self-reported 
and/or healthcare-documented lifetime chronic medical conditions. 
Proportions of healthy individuals included in the body (28,589 of 
143,423 = 0.199) and brain (7,909 of 36,901 = 0.214) analyses subsam-
ples are slightly greater than the proportion in the full sample (91,808 
of 502,504 = 0.183; body, χ2 = 203.43, P < 2.2 × 10−16, brain, χ2 = 228.01, 
P < 2.2 × 10−16). This suggests that individuals for whom organ age was 
estimated are not necessarily representative of the full cohort. Demo-
graphic details of individuals comprising each defined clinical group 
are provided in Supplementary Table 8.

Individuals diagnosed with more than one disease category 
throughout their lifetime were assigned to multiple disease groups. 
As shown in Extended Data Fig. 6, most individuals included in 
either body or brain aging analyses (n = 169,109; 90,918 males) were 
linked with a single diagnostic category (n = 52,113, 54.1%) and the 
proportion of individuals comorbid with 2–8 conditions was 28.3% 
(n = 27,215), 11.6% (n = 11,171), 4.1% (n = 3,991), 1.4% (n = 1,308), 0.4% 
(n = 394), 0.1% (n = 103) and 0.026% (n = 25), respectively. The largest 
number of comorbidities was nine, in four individuals (0.0042%). 
Extended Data Fig. 6b,c shows a comorbidity network, representing a 
population-level lifetime co-occurrence of the 16 disease categories. 
The extent of comorbidity was quantified by correlating (Pearson 
correlation) the presence of categorical diagnoses (1, yes or 0, no) 
across individuals for each sex. Permutation testing (n = 10,000) was 
used to estimate P values, and significant correlations (P < 4.2 × 10−4) 
were Bonferroni-corrected for (16 × 15) / 2 = 120 disease pairs. Results 
were broadly consistent between females (Extended Data Fig. 6b) and 
males (Extended Data Fig. 6c) and that the 16 disease categories were 
parsed into two large comorbid groups, corresponding to major brain 
and body disorders. Notably, brain disorders were also comorbid with 
diseases primarily implicated in body organ systems, with stronger 
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effect sizes observed in males. For example, depression was signifi-
cantly associated with osteoarthritis, COPD and hypertensive diseases 
and dementia was associated with CKD and stroke.

Mortality risk prediction
Mortality data released on 4 March 2021 were used in this study. Indi-
vidual mortality status (date of death) was determined using data 
linkages to national death registries in the UK, including NHS Digital 
(England and Wales) and NHS Central Register (Scotland). Data linkage 
procedures and steps in data cleaning and validation are described 
in detail in the central UK Biobank death linkage documentation: 
(https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/Death-
Linkage.pdf).

Mortality was confirmed in 8,109 (age of death 42–83 years, 
mean 69.6 ± 7.3, 5,670 males) and 330 (age of death 53–82 years, mean 
70.7 ± 6.4, 203 males) individuals after baseline assessment of body 
and brain function, respectively. We first compared the mean age gap 
between deceased and living individuals for each organ system using a 
two-sample t-test. Cox proportional hazards regression was then used 
to estimate the risk of mortality associated with organ-specific age 
gaps. Last, we developed a logistic model using tenfold cross-validation 
to predict an individual’s 5- and 10-year survival and premature mortal-
ity based on organ-specific age gaps. The risk of mortality associated 
with body and brain age were estimated separately because of the time 
difference in assessments (Fig. 2c).

The Cox proportional hazards model was applied under the 
assumption that mortality HRs in relation to organ age gaps do not 
change over time for any individual. Therefore, the estimated HR rep-
resented the relative risk of death for each unit increase in age gap, 
compared to the baseline hazard, which was defined as the mean age 
gap across individuals. To enable comparisons, each organ age gap 
was first standardized by mean and s.d. Two Cox regression mod-
els were then formulated, where one model estimated the mortality 
HRs per 1 × s.d. increase in organ-specific age gap, adjusting for sex 
and chronological age (standardized) and the second model further 
adjusted for existing diagnoses, general health (long-standing illness) 
and key lifestyle factors, including smoking, exercise, socioeconomic 
inequality (deprivation) and tertiary education. Key lifestyle factors 
were selected based on (1) significant associations with body/brain age 
gap (ranked within the top 20 out of 158 measures); and (2) no missing 
responses among deceased individuals. Survival was ascertained up to 
13.41 (mean 7.47 ± 3.2) and 6.07 (mean 2.47 ± 1.49) years after baseline 
assessment of body and brain function, respectively. Living individuals 
were right-censored, where survival duration was calculated as days 
between the date of body or brain assessment and the date of mortality 
ascertainment (4 March 2021).

Finally, using tenfold cross-validation, logistic models were 
trained to predict the probability of an individual’s survival time and 
premature mortality based on body age gaps. A predictive model was 
not developed for brain age gaps, given the lack of evidence for a link 
between advanced brain age and mortality risk, as estimated from Cox 
regression (Supplementary Fig. 4b,c). For survival time (T) prediction, a 
nominal logistic regression was fitted to classify whether an individual 
was deceased within 5 years (T < 5) or had lived more than 5 years (T ≥ 5, 
deceased or living) after assessment of body function. The same model 
was fitted for 10-year survival time. All living individuals had lived more 
than 10 years (minimal survival time of 10.43 years) after body function 
assessment. Similarly, logistic models were developed to predict an 
individual’s premature death. Premature death is typically defined as 
death occurring before the mean age of death in a certain population, 
which is approximately 75 years in the UK100. Death before age 70 years 
was also considered based on the mean age of death of the current 
UK Biobank cohort (n = 34,003, mean age of death 69.6 ± 7.4 years). 
Prediction models were estimated based on five groups of predictors 
to assess the extent to which body age gaps improved prediction of 

survival and premature death beyond established predictors, includ-
ing chronological age, sex, existing disease diagnoses and key lifestyle 
factors. The six models were as below:

•	 Model 1, chronological age and sex.
•	 Model 2, chronological age, sex and eight body system ages.
•	 Model 3, chronological age, sex and existing diagnoses of the  

16 disease categories.
•	 Model 4, chronological age, sex, eight body age gaps and exist-

ing diagnoses of the 16 disease categories.
•	 Model 5, chronological age, sex, eight body age gaps, existing 

diagnoses of the 16 disease categories, general health and key 
lifestyle factors included in the Cox regression analysis.

•	 Model 6, chronological age, sex, existing diagnoses of the 16 dis-
ease categories, general health and key lifestyle factors included 
in the Cox regression analysis.

Chronological age and body age gaps were standardized by mean 
and s.d. before model training. The AUC of the receiver operating char-
acteristic curve was used to quantify prediction accuracy. Confidence 
intervals were estimated with bootstrapping (100 samples).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data were obtained from the UK Biobank, the ADNI and the AIBL Flag-
ship Study of Ageing. Participant age gaps for all body and brain sys-
tems estimated in this study will be returned to the UK Biobank to 
strengthen the resource and facilitate access to other researchers 
for future research. Researchers can register to access all data used 
in this study via the UK Biobank Access Management System (https://
bbams.ndph.ox.ac.uk/ams/) and the ADNI database (https://adni.
loni.usc.edu/).

Code availability
MATLAB (R2021a, MathWorks) code for conducting the core analyses is 
available on GitHub (https://github.com/yetianmed/BioAge). SEM was 
performed using the Tetrad software package v.6.8.1 (https://github.
com/cmu-phil/tetrad). The organ images shown in Fig. 1 were created 
with BioRender.com. Other figures were created using visualization 
routines in MATLAB.
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Extended Data Fig. 1 | Age prediction accuracy. Scatter plots show associations between chronological and predicted age for prediction models based on body and 
brain phenotypes as well as phenotypes pertaining to each individual organ system. Lines of best fit indicated with solid black lines. r: Pearson correlation coefficients; 
MAE: mean absolute error.
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Extended Data Fig. 2 | Replication of predictive models for brain gray 
matter age. (a) Scatter plots show associations between chronological age and 
predicted age for prediction model based on brain gray matter phenotypes in a 
combined group of healthy individuals from the Australian Imaging, Biomarkers 
and Lifestyle Flagship Study of Ageing (AIBL, n = 396, 154 males), the Alzheimer’s 
Disease NeuroImaging Initiative (ADNI, n = 467, 192 males) and the UK Biobank 
(n = 7,922, 3,624 males). Lines of best fit indicated with solid black lines. n: 
training sample size; r: Pearson correlation coefficients; MAE: mean absolute 
error. (b) Scatter plots show associations between gray matter feature weights 
estimated from the original age prediction model (primary) and the re-trained 
model using the replication cohort. Lines of best fit indicated with solid black 
lines. r: Pearson correlation coefficients. (c) Gray matter age (that is, age gap) in 

individuals diagnosed with mild cognitive impairment (MCI, n = 780, mean age 
gap=1.07 ± 4.25 years) and dementia (n = 284 mean age gap=3.19 ± 6.13 years), 
compared to healthy individuals (HC). The mean age gap significantly differs 
across the three groups (F-statistic=157.49, p = 4.71 × 10−68, two-sided). Asterisks 
indicate significant between-group differences, adjusting for chronological 
age and sex (MCI vs HC, t = 10.39, p = 3.56 × 10−25; dementia vs HC, t = 16.94, 
p < 2.23 × 10−308; MCI vs dementia: t = 10.76, p = 1.11 × 10−25). The bottom and top 
edges of the boxes indicate the 25th and 75th percentiles of the distribution, 
respectively. The central line indicates the median. The whiskers extend to 
the most extreme data points that are not considered outliers (1.5-times the 
interquartile range).
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Extended Data Fig. 3 | Synchrony among organ-specific age gaps. (a) 
Synchrony in biological ages between each pair of body systems at baseline 
assessment was estimated using partial correlation, adjusting for sex and 
chronological age. Correlation coefficients of significant pairs of correlations 
(p < 0.002, two-sided, t-test, Bonferroni-corrected for 21 pairs) are indicated 
in the matrix (left) and also visualized as a graph (right). In the graph, each 
node represents one of the 7 body organs and the edges between them indicate 
correlations. Edge thicknesses are proportional to correlation coefficients. Edges 
are suppressed for small effect sizes (|r|<0.05) (b) Same as (A) but shows the 
correlations at follow-up assessment. Body systems can be differentiated into 

two groups based on interorgan synchrony in age gaps (Group I: renal, hepatic, 
musculoskeletal; Group II: pulmonary, cardiovascular, metabolic, immune). (c) 
& (d) Same as (A) & (B) but the synchrony in age gaps is shown for different brain 
systems at baseline and follow-up assessment respectively. Biological age is 
most strongly synchronized between white and gray matter, whereas functional 
connectivity is only weakly synchronized with other brain systems (Bonferroni-
corrected for 3 correlations, p < 0.017, two-sided). GM, gray matter; WM, white 
matter; FC, functional connectivity. Ward’s linkage clustering was used to 
determine the reordering and the cluster tree shown.
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Extended Data Fig. 4 | Relationship between chronic disease and organ-
specific biological age. (a) A clock face represents the extent of body aging for 
16 disease categories. Body age is older (younger) in a clockwise (anticlockwise) 
direction, with a body age gap of zero at the 12 o’clock position. Bar plot 
shows the mean body age gap in each disease, sorted from the smallest to the 
largest value. (b) Same as panel (A) but shows the mean brain age gap across 
disease. Dashed arm indicates replication dementia cohort. (c) Word-cloud 

representation. The font size was normalized according to the mean age gap 
across the 16 disease groups within each organ system. Diseases for which 
organs appear older than chronological age (gap>0) are colored black, whereas 
diseases for which organs appear younger (gap<0) are colored blue. COPD, 
chronic obstructive pulmonary disease; CKD, chronic kidney disease. Organ 
image was created with BioRender.com.
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Extended Data Fig. 5 | Effect size of body and brain age in chronic disease. 
Effect sizes of differences in organ-specific age gaps between each disease 
category and healthy comparison group were quantified using the Cohen’s d. The 
Cohen’s d value was multiplied by the sign of the mean between-group difference 
in age gap. Icons representing body systems and organs are positioned to 

indicate the effect size for each disease category. Icons are not shown for organs 
with mean age gaps that do not significantly differ from zero (p < 2.6 × 10−4, two-
sided, t-test, Bonferroni corrected, Fig. 4a). Disease categories are ordered from 
top to bottom according to increased mean body age gaps as shown in Fig. 4b.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02296-6

Extended Data Fig. 6 | Disease comorbidity. (a) Bar plots show the number 
of lifetime comorbid diagnoses for individuals who completed assessment 
of body (left) or, brain (middle) function and all individuals (right). (b) 
Comorbidity network for females. The Pearson correlation coefficient 
was used to quantify the extent of lifetime comorbidity between each 
pair of disease categories. Permutation testing (n = 10,000) was used to 

estimate p-values and significant correlations were Bonferroni corrected 
for (16 × 15)/2 = 120 disease pairs (p < 4.2 × 10−4, one-sided). Non-significant 
correlations were suppressed from the correlation matrix (left) and 
the network graph (right). Edge thickness is modulated by correlation 
coefficients. (c) Same as (d) but for males. Also see Methods.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Biological organ age in chronic disease at different 
illness stages. (a) Distribution of body age gaps (columns) for 16 disease 
categories (rows) in individuals at prodromal stage, compared to healthy 
individuals (HC, first row). Distributions are colored according to disease- 
and organ-specific mean age gaps. Colored distributions have a mean that 
significantly differs from the healthy group (p < 3.9 × 10−4, two-sided, t-test, 

Bonferroni corrected for 16 disease categories × 8 body systems = 128 tests). 
Distributions colored gray have a mean that is not significantly different from 
the healthy group. (b) Same as (A) but in individuals with established diagnosis. 
Prodromal groups for brain imaging data were insufficient to investigate the 
impact of disease progression on brain age.
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Extended Data Fig. 8 | Survival time and premature death prediction.  
A logistic regression model was trained (10-fold cross-validation) to predict 
an individual’s 5- and 10-year survival (left) and premature death (defined as 
death before 70 or 75 years old, right). Boxplots show prediction accuracy, as 
quantified with area under curve (AUC). A hierarchy of six logistic models was 
established to determine the extent to which biological age improves prediction 
of survival time and premature death above and beyond established predictors 
(that is, chronological age, sex, diagnoses, lifestyle factors). For prediction of 
both survival time and premature death, the model including body age gaps 
(Model 2) significantly outperforms the model including only chronological 
age and sex (Model 1, 5-year/10-year: p = 4.55 × 10−133/p = 1.15 × 10−141; 70 years 
old/75 years old: p = 3.40 × 10−77/p = 1.19 × 10−87, two-sided, t-test). Similarly, 
the model including body age gaps (Model 4) significantly outperforms 
the model with only chronological age, sex and existing diagnoses (Model 
3, 5-year/10-year: p = 3.52 × 10−58/p = 2.02 × 10−88; 70 years old/75 years old: 

p = 9.44 × 10−47/p = 1.56 × 10−54, two-sided, t-test). Nevertheless, Model 5, which 
includes all predictors, achieves the most accurate predictions of survival time 
(5-year: AUC = 0.774 ± 0.006; 10-year: AUC = 0.770 ± 0.003) and premature 
death (70 years old: AUC = 0.86 ± 0.003; 75 years old: AUC = 0.86 ± 0.003). 
Omitting body age gaps (Model 6) leads to significantly reduced accuracy 
(5-year/10-year: p = 4.43 × 10−29/p = 4.89 × 10−40; 70 years old/75 years old: 
p = 1.86 × 10−42/p = 4.31 × 10−46, two-sided, t-test) for predictions of survival time 
(5-year: AUC = 0.76 ± 0.005; 10-year: AUC = 0.76 ± 0.003) and premature death 
(70 years old: AUC = 0.85 ± 0.003; 75 years old: AUC = 0.85 ± 0.003). Confidence 
intervals for AUC estimated with bootstrapping (100 samples). The bottom and 
top edges of the boxes Indicate the 25th and 75th percentiles of the distribution, 
respectively. The central line indicates the median. The whiskers extend to 
the most extreme data points that are not considered outliers (1.5-times the 
interquartile range).
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